
T µµ spectral weight and bulk viscosity

Where we can calculate it
Guy D. Moore, Omid Saremi

• Review of bulk viscosity, spectral weight

• Perturbative regime: kinetic theory

∗ High frequency: rising cut

∗ Low frequency: peak

• Near the critical point: universal scaling

∗ Dynamical universality classes: QCD vs. liquid-gas

∗ Critical slowing down and Bulk viscosity

• Summary and conclusions
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Raise and lower a piston: compress and decompress gas
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time

Pressure rises and falls as you compress and decompress.
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Compress faster: pressure deviates from equilibrium version
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Pressure

time

Equilibrium (slow)

Nonequilibrium (fast)

Compression: pressure higher

Decompression: pressure lower Second Law of Thermodynamics

Difference is characterized by Bulk Viscosity
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Consider small, sudden compression:
Pressure

Time

Tcompress

If operator O1 causes compression, O2 measures P :

• limt→0〈O1(0)O2(t)〉 gives height of discontinuity

•
∫∞
0 dt 〈O1(0)O2(t)〉 gives area under difference curve.
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Think of steady compression as many small ones

Pressure

Time

Integrated extra pressure is
∫

(P − Peq)dt = (∆Vtot)
∫ ∞

0
dt 〈O1(0)O2(t)〉
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Interesting quantity is integrated extra pressure.

Defined as the bulk viscosity:
∫

dt(P − Peq) = −ζ∆V = −ζ
∫

dt ~∇ · ~v

or

P − Peq = −ζ ~∇ · ~v

Related to correlator of pressure operator O2 = P = 1
3
T i

i

and expansion operator O1 = O2. Usual arguments:

ζ =
1

2
lim
ω→0

1

ω

∫ ∞

−∞
dteiωt

∫

d3x
〈

1

9

[

T i
i (x, t) , T

j
j (0, 0)

]

〉

.

And small t response described by ω integral.
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Is it T i
i ? Or T µ

µ ?

It doesn’t matter!
[

O†
1 , O1

]

=
[

O†
1 + c , O1 + c

]

.

T 0
0 acts like constant as energy is conserved.

Useful choices:

• T i
i : intuitively clear

• T µ
µ : sum rules and exact results

• T i
i − 〈T i

i 〉 ≃ T i
i + 3c2sT

0
0 : allows KMS

∫

dteiωt
〈

O†(t)O(0)
〉

=
eω/T

eω/T−1

∫

dteiωt
〈[

O(t) , O(0)
]〉

which only holds for op’s with vanishing vac value
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Perturbative regime

Normalize so S =
∫

d4x 1
2g2 TrGµνG

µν .

Do pure glue for simplicity. Conformal anomaly:

T µ
µ =

β

g4
TrGµνG

µν , β ≡
µ2d

dµ2
g2 ∼ g4 .

Evaluate Wightman correlator of (β/g4)G2 − (1 − 3c2s )T
0
0 .

Leading diagram.

Note (1 − 3c2s ) ∼ g4 is small;

(1 − 3c2s )T
0
0 is g2 suppressed.
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Leading perturbative result

G>(Q) =
2β2dA

9g4

∫ d4Pd4R

(2π)8
G>

µα(P )G>
νβ(R)(2π)4δ4(Q−P−R)

×(gµνP ·R− P µRν)(gαβP ·R− PαRβ)

Cut propagator

G>
µν(P ) = [nb(p

0)+1] 2πδ(P 2+m2
∞)
∑

λ

ǫµ(λ)ǫ∗ν(λ) ,

Main contribution: large q0, both lines positive frequency

G>
cut(ω, 0) =

[

nb(
ω
2
) + 1

]2 2β2(g)

9g4

2dA ω
4

32π

rising “cut” contrib: order g4ω4.
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Other contribution

Small q0, one line positive one negative frequency.

Very naively: P 2 = 0 = R2 and P +R = 0 so P ·R = 0.

Get 0.

Less naive: P 2 = −m2
∞ ∼ g2T 2.

Need (1 − 3c2s )T
0
0 term (same order).

G>
pole(ω, 0) = δ(ω)

2

9
2dA

1

4π

∫ ∞

0
n(p)(1 + n(p))

×

[

(

1

3
− c2s

)

p2 +
βm2

∞

g2

]2

dp .

IR singular: Order g7T 4 area delta function at ω = 0.
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Need to know width of peak

Bulk viscosity is G>(ω = 0)/T . Need width of peak

Include imaginary parts on propagators: need ladders as well

Amounts to kinetic treatment. Tµ
µ in terms of f :

(T i
i + 3c2

sT
0
0 ) =

∑

∫

d3p

(2π)3

[

(

1 − 3c2
s

)

p2 +
3βm2

∞

g2

]

(f0 + δf)

Boltzmann equation

v · ∇f0 + ∂tf = −C[f ]

becomes

f0(1+f0

ET

(

[

1

3
− c2

s

]

p2 −
βm2

∞

g2

)

= −iωδf − C[f ] .
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Details of collisions do not change area of peak:

δf(ω) =
1

C − iω
[source] →

∫

dωδf(ω) = [source]

Shape of peak is crudely

G>(ω)∼
∫ d3p

(2π)3
f0[1+f0]

[

(

1

3
−c2s

)

p2 +
βm2

∞

g2

]2
Γ[p]

ω2+Γ2[p]

with Γ[p] ∼ g4T 3/p2 the large-angle scatt. width

Peak height dominated by hard particles.

“Shoulders” and total area by soft particles.
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Shape of low frequency peak
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Summary:
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Summary:
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Implications for Euclidean correlators

Integral relation between GE(τ) and ρ:

GE(τ) =
∫ ∞

−∞

dω

2π

〈
[

O1 , O1

]

〉(ω)

ω
K(ω, τ) ,

K(ω, τ) =
ω cosh[ω(τ − β/2)]

sinh(βω/2)
.

Do opposite of MEM: compute what spect. wt. implies.
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The function K(ω, τ)

Peak near zero gives common contrib to GE(τ), all τ
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Another analytically tractible case

Critical region near second-order transition point:
Τ

µ

?????

Possible to compute parametric behaviors analytically
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Static universality

“Chiral” phase transition not true symmetry breaking.

Order parameter ψ = 〈ψ̄ψ〉 same universality as Ising

“Directions” T , µ map linearly into

H,T (Ising) or T, P (liquid-gas)

T

µ

Η

Τ Τ

P

T−like

H−like

T−like

H−like

T−like

H−like

Correlation length ξ ∼ (T − Tc)
−ν [ν = 0.630]
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Dynamic universality

Long scale dynamics essentially hydrodynamic
Hohenberg Halperin Rev Mod Phys 49 p435 (1977)

Depend on what quantities are conserved (ψ is not)

Conserved: T 0µ = (ǫ, ~P ) and ρB

Liquid-gas system: ǫ, ~P , ρ conserved.

Same dynamic universality as Liquid-Gas
Son Stephanov hep-ph/0401052

Dynamics analyzed to death by CM physics people

Even bulk viscosity analyzed Onuki, Phys Rev E 55 p403 (1997)
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Consider Ising system and varying temperature.

Free energy F [T ] = Fnonsing[T ] + t2−αFsing t ≡
T − Tc

T

Heat capacity dominated by singular part (α ≃ 0.11 > 0)

E = T
∂F

∂T
+ F = Enonsing + t1−α(2 − α)Fsing +O(t2−α)

so

Cv ∼
∂E

∂T
∼ t−α + Cv,nonsing

Compression heats: most heat stored by increasing ψ fluct.

Correl. length ξ ∼ t−ν . Scaling for T > k > ξ−1.

Cv[k
′> ξ−1] ∼ Cv,nonsingt

α ⇒ Cv[k
′ > k] ∼ Cv,nonsingk

−α/ν
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Universal dynamic behavior

Fluctuations in ψ on scale T > k ≥ ξ−1 diffusive,

〈ψ(k, t)ψ(−k, 0)〉 ∼ χ(k) exp(−t/τ) , τ ∼ k−z

Here z dynamic critical exponent: z ≃ 3 for liquid-gas

Abrupt compression: ψ has no time to respond

Compressed system initially has same ψ fluct.

Equilibration: ψ must readjust for all k ≥ ξ−1

Time scale for equilibration ξz ∼ tzν.
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Almost true: ζ ∼ T 3(ξT )z = T 3tzν.

Small correction: P mostly relaxes sooner.

Consider abrupt compression.

• Nonsingular fields change: Pressure rises δP ∼ δǫ

• Time τ later: modes with k > τ−1/z thermalized

• These singular modes absorb most δǫ, have no P .

• Energy fraction in nonsingular modes: (k/T )α/ν .

δP (τ) ∼ δǫ τ−α/νz until τ ∼ tz/ν .

Hence, ζ =
∫

dτδP (τ)/δǫ ∼ ξz−α/ν ∼ t−zν+α
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Slow dynamics: another low ω peak!

G>

ω

Tξ−z

T

ω α (ω)24

4

ξ

ω−1−α/ν

z−α/ν

z

4



Implications for spectral weight

Again, low frequency ω < T peak in spectral weight.

All GE(τ) raised by common amount: Area under peak.

• Determined by static universality

• Does not diverge as T → Tc

Shape of peak essential to finding ζ =height.

Very hard to determine from GE(τ).
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Conclusions

• Slow equilibration ⇒ Peak in spectral function

• Euclidean Green function cannot find shape of sharp

peak

• Slow equilibration at weak coupling: “Wide shouldered”

peak

• Slow equilibration near critical point:

nearly ω−1 shaped peak, ζ ∼ ξz−α/ν

Euclidean methods probably fail unless crossover very

“smooth”

2



Comment on Kharzeev and Tuchin

They claim spectral weight

∫

dω
ρ

ω
∼
T 5∂

∂T

ǫ− 3P

T 4
∼ T 5∂T (1 − 3c2s )

Weak coupling: Since (1 − c2s ) ∼ g4 this is O(g6T 4).

Contradicts our peak of area g7T 4 and cut g4ω4

Their estimates of shape of peak also very naive

Critical behavior: they miss ξz time scale, resulting peak

Their results depend on Kramers-Kronig, fail if ρ ≥ ω0 at

large ω. Actual behavior g4ω4 + g6T 4ω0 up to logs
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